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Future Mars exploration missions, both robotic and piloted, may utilize Earth-to-

Mars transfer trajectories that are significantly different from one another, depend-
ing upon the type of mission being flown and the time period during which the

flight takes place. The use of new or emerging technologies for future missions
to Mars, such as aerobraking and nucJear rocket propulsion, may yield navigation

requirements that are much more stringent than those of past robotic missions,

and are very difficult to meet for some trajectories. This article explores the inter-
dependencies between the properties of direct Earth-to-Mars trajectories and the

Mars approach navigation accuracy that can be achieved using different radio met-

ric data (vpes, such as ranging measurements between an approaching spacecraft
and Mars-orbiting relay satellites, or Earth-based measurements such as coherent

Doppler and very long baseline interferometry. The trajectory characteristics affect-

ing navigation performance are identified, and the variations in accuracy that might

be experienced over the range of different Mars approach trajectories are discussed.

The results predict that three-sigma periapsis altitude navigation uncertainties of

2 to 10 km can be achieved when a Mars-orbiting satellite is used as a navigation
aid.

I. Introduction

The exploration of Mars to date has been accomplished

by unmanned spacecraft using low-energy ballistic trans-
fer trajectories to reach their destinations. NASA's ambi-

tious plans for future Mars exploration call for a variety

of robotic and piloted spacecraft to investigate the Red

Planet from orbit and on its surface. These missions may

employ new technologies, such as nuclear rocket propul-
sion, which make it possible to send large payloads to Mars

along high-energy trajectories that are inaccessible to cur-

rent chemically propelled launch-vehicle/upper-stage com-

binations. Another concept receiving serious consideration

is aerobraking, in which a spacecraft executes a contro]led
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passage through the Martian atmosphere to decelerate into
a closed orbit or to initiate a descent to the surface of the

planet. Aerobraking can also be employed by a spacecraft
already orbiting Mars to modify its orbit.

of the relative importance of guidance errors versus orbit

determination errors in Mars approach navigation system

design.

The successful use of aerobraking for orbit insertion

(called aerocapture) or direct entry and landing may re-
quire approach navigation accuracies that are much more

stringent than those typically needed to support a propul-
sive orbit insertion, depending upon the target orbit (or

landing point) and the characteristics of the aerobrake ve-
hicle itself. For example, previous studies of navigation re-

quirements for Mars aerocapture have found that aer.ocap-
ture vehicles of moderate maneuver capability (maximum

lift-to-drag ratios of 0.5 to 0.7) must be delivered to within

5 to 20 km in altitude and 30 to 50 km along the flight

path (downtrack) at the nominal atmospheric entry point,

which typically occurs just prior to closest approach [1,2].
This is in contrast to an altitude delivery requirement at

closest approach of about 300 km for the Mars Observer
mission, which will perform a propulsive orbit insertion. 1

Spacecraft using high-thrust nuclear propulsion (nuclear-

thermal rocket engines, in which a solid or gaseous core

reactor is used to heat a working fluid such as hydrogen)

will probably also require greater delivery accuracies than
Mars-Observer-class missions, as they may possess Mars

approach velocities of up to l0 kin/see [3]; in contrast, this

figure will be about 2.5 km/sec for Mars Observer.

Several studies have analyzed the performance of differ-

ent pre-aerocapture approach navigation schemes at Mars

[1-2,4-6]. These studies, whict! have addressed a rela-
tively small subset of possible Mars approach trajecto-

ries, investigated radio and optical data that provide di-

rect measurements of the Mars-relative trajectory of an

approaching spacecraft: spacecraft onboard optical imag-
ing of Martian moons, ranging measurements between a

Mars-orbiting communications relay satellite and the ap-

proaching spacecraft, and Earth-based dual-spacecraft ra-

dio interferometry, again using a Mars relay satellite in

conjunction with the approaching spacecraft. This article
describes a preliminary assessment of the impact of dif-

ferent approach trajectories, arising from different types

of direct Earth-Mars transfer trajectories, on the perfor-

mance of the radio navigation schemes involving a Mars
relay satellite listed above, focusing on the performance

needed to support the use of aerobraking. The guidance

accuracy that can be achieved by modern robotic space-

craft is also investigated briefly to provide some indication

1 p. B. Esposito, _[ars Observer Navigation Plan, JPL D-3820,

Rev. C (internal document.), Jet Propulsion Laboratory, Pasadena,

California, June 5, 1990.

!1. Direct Transfer Trajectories

There are many different trajectories that can be used
to reach Mars from the Earth. Current launch vehicle

capabilities limit the available trajectories to those with

reasonable launch energies for spacecraft of modest (less

than about 6000 kg) mass. Avoidance of excessive transit
time generally limits the range of possible trajectories to
those that take less than one full revolution around the

Sun. After these initial constraints are taken into account,

direct transfer trajectories known as type-1 (transfer angle

between 0 and 180 deg) or type-2 (transfer angle between
180 and 360 deg) are left to consider. Transfers that in-
volve a flyby of Venus after launch from Earth are also

possible, but these trajectories are beyond the scope of

this study [7].

A. Trajectory Characteristics

For a given launch opportunity, either a type-1 or a
type-2 trajectory can be selected. Type-1 trajectories

generally have shorter transit times than type-2 trajec-

tories; however, in most cases type-1 trajectories also re-

quire a higher launch energy than type-2 trajectories for

a given launch opportunity. Within the general categories
of type-1 or -2 lie other trajectory options. One obvious

choice is to optimize for a minimum launch energy (gen-
erally defined in terms of the parameter called C3, with

units of km2/sec 2, or hyperbolic excess launch velocity,

Voo, which is equal to v/-_3). Another alternative is to min-

imize the arrival velocity at Mars. Unfortunately, trajec-

tories optimized for minimum launch energy have greater

arrival velocities at Mars than trajectories optimized for

minimum Mars arrival velocity. Conversely, trajectories

optimized for minimum arrival velocity at Mars possess

larger launch energies at Earth than trajectories optimized
for minimum launch energy.

Figure 1 shows four possible trajectories for the 1998

launch opportunity. Each of these trajectories corresponds
to a type-1 or type-2 transfer, further subdivided into a

minimum launch energy case and a minimum arrival veloc-

ity case. While trajectories for different launch opportuni-

ties would, by necessity, differ somewhat from those shown

in Fig. 1, the basic appearance of the different trajectory

types relative to each other would not change significantly.

Figure 2 depicts the Mars arrival geometry corresponding
to the type-1 minimum launch energy trajectory, assuming
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a polar circular target orbit with an altitude of 700 kin.

Figure 3 depicts the Mars arrival geometry for the type-2
minimum launch energy trajectory, assuming that the tar-

get orbit is the same as that in Fig. 2. In both Figs. 2 and
3, the frames showing the view from "above" the eclip-

tic plane represent how the trajectory would look when
viewed from the ecliptic north pole looking south at the

ecliptic plane, the mean plane of the Earth's orbit. Also in

Figs. 2 and 3, note that the angle between the Earth-Mars

radial line and the type-1 (Fig. 2) incoming trajectory is

significantly different from the type-2 (Fig. 3) trajectory.

B. Trajectory Design Issues

There are many factors that can influence the selec-

tion of a particular Earth-Mars trajectory. However, it
is possible to single out a few major constraints that af-

fect trajectory selection and, consequently, Mars approach

navigation performance. The first, and most obvious, con-

straint on a trajectory is that it must deliver a spacecraft

to Mars. The energy imparted from the launch vehicle

system (launch vehicle, upper stages, and any additional

boost stages) to the spacecraft at injection must match the
spacecraft velocity to the velocity required at a particular

point in space to follow a given transfer trajectory. There
are many different options for meeting this constraint [8,

9]. For robotic missions, the trajectory design process gen-
erally consists of evaluating trade-offs between minimizing

the launch energy, and hence the injection velocity, and
the Mars arrival velocity, subject to criteria derived from

the mission objectives. For piloted missions, this process

is further complicated by the additional constraint that

a return leg is also needed, therefore the launch energy
from Mars and the arrival velocity at Earth for a return

trip must also be considered along with the correspond-

ing parameters for the Earth-Mars trajectory (Soldner [5]
describes the round-trip trajectory design problem for pi-

loted missions).

Table 1 summarizes the range of launch energies and

Mars arrival velocities for minimum launch energy and

minimum arrival energy type-1 and type-2 trajectories, ob-
tained from an analysis of Mars launch opportunities be-

tween 1995 and 2020. Nuclear-rocket-propelled spacecraft

may be able to utilize fast "sprint" trajectories, which are
type-l-class trajectories with larger launch energies and

arrival velocities than the optimized trajectories given in
Table 1.

The range of launch azimuths available from a partic-
ular launch site is another constraint that must be con-

sidered. The launch-azimuth constraints for the Kennedy

Space Center (KSC) are shown in Fig. 4. Range safety

considerations call for a launch trajectory over water for

the early part of the flight (it should be noted that not

all of the allowable azimuths shown in Fig. 4 are neces-
sarily available because of islands in certain areas of the

allowable envelope). From KSC, the available range of
launch azimuths effectively restricts the injection asymp-

tote declination (the inclination of the injection velocity

vector relative to the Earth's equatorial plane) to the range

from about -53 to +53 deg. This restriction can, in

turn, make it very difficult to achieve the injection ve-

locity vector required to utilize some direct Earth-Mars
transfers for certain launch opportunities. For example,

the type-1 minimum launch energy trajectory for the 2001

launch opportunity requires an injection asymptote dec-

lination of 54 deg, which is unreachable from KSC with
current U. S. launch vehicles because of launch azimuth

constraints. Even if the required injection asymptote dec-
lination can be reached, trajectories with large declination

rfiagnitudes generally require greater launch energies from

a near-equatorial launch site such as KSC, effectively re-

ducing the available payload mass for the mission. Other

mission design considerations such as the length of the
daily launch window, desired Mars arrival geometry, and

target orbit influence the transfer trajectory design process

as well [9].

III. Navigation Accuracy Analysis

The objective of approach-phase navigation is to de-

liver a spacecraft to a chosen aim point at a desired time.

The navigation system for this task may consist of many
different physical elements, located both on the spacecraft

and on the Earth, but it must perform two primary func-

tions, regardless of the means employed: orbit determi-
nation, which is the process of determining the current

and predicted future flight path of a spacecraft, and guid-

ance (maneuver analysis/design), which is the process of

planning and executing trajectory correction maneuvers

(TCMs) that will remove known deviations of the space-
craft from the intended flight path and will satisfy other

mission constraints. The overall navigation, or delivery,

accuracy achieved by the end-to-end navigation system

depends on the accuracy to which both the orbit deter-
mination and guidance functions are performed.

A. Maneuver Analysis

Guidance for interplanetary spacecraft is normally car-

ried out using propulsive maneuvers of short duration for

flight path control (the exception being spacecraft employ-

ing low-thrust nuclear or solar-electric propulsion systems

that may operate continuously for extended periods) to
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achieve a desired close flyby of a target body or to deceler-

ate into a closed orbit upon arrival. In this section, approx-

inaate estimates of the navigation uncertainty due to guid-

ance errors are developed using propulsion-system perfor-
mance data representative of modern robotic spacecraft.

In subsequent sections, approximate orbit-determination

accuracy estimates are developed and used along with the
guidance-error estimates to compute statistics for the over-

all navigation altitude error at the vacuum periapsis point

(closest approach).

Maneuver calculations are most often performed using
an asymptotic, or "B-plane," coordinate system, defined

in Fig. 5. The origin of this system is the center of mass

of the target planet. The B-plane coordinates describ-

ing the trajectory are defined in terms of the orthogonal
unit vectors S, T, and /_. S is parallel to the incom-

ing asymptote of the approach hyperbola, while T usually

lies in either the ecliptic plane or the equatorial plane of

the target bod_y; /_ completes the triad. The aim point
is defined by B, known as the "miss" vector, and the de-
sired arrival time, which is expressed in terms of the lin-

earized time of flight (LTOF), is defined as the time be-
fore closest approach, if it is assumed that the miss vector

has zero magnitude. Both maneuver-execution errors and

orbit-determination errors are normally characterized by

a three-sigma B-plane dispersion ellipse, shown in Fig. 5,
and the three-sigma uncertainty in linearized time of flight.

In Fig. 5, SMAA is the sernimajor axis of the dispersion

ellipse, while SMIA is the semiminor axis of the dispersion
ellipse.

During a mission, the miss vector and linearized time

of flight corresponding to a spacecraft's actual trajectory
are estimated repeatedly during the orbit-determination

process and compared with their desired values. If the

current estimated aim point is sufficiently removed from

the desired aim point, then a TCM must be performed

at some point to remove this deviation. The placement

and design of TCMs must take into account a great many
considerations; these have been described in much greater

detail than can be given here by Hintz and Chadwick [10,
11].

For roughly the final 10 to 14 days before encounter,

a spacecraft approaching Mars will have a nearly con-

stant velocity with respect to the planet, directed along
the Mars-spacecraft radial line, until it is within 12 to

24 hr of periapsis (closest approach) [8]. During this pe-

riod, small changes in the B-plane coordinates resulting

from a small, instantaneous spacecraft velocity change (an

excellent approximation for most TCMs) vary roughly lin-
early with time. This relationship can be expressed as

(1)

where

AB = [AB.T, AB.R, ALTOF] T

A_ : [ART, AVR, AVS] T

[i°°K_ t 0

0 t/v_

and

AB.T, AB.R = %hanges in T and R components of
B, respectively

ALTOF = change in linearized time of flight

ArT, AvR, Avs = T, R, and S velocity increments

t = time to go before closest approach

Vc¢ = hyperbolic approach velocity

The approximation given for the K matrix in Eq. (1) ef-
fectively assumes that the target planet has no mass. It has

been shown that for a small planet such as Mars, Eq. (1)

is also a fairly good approximation (-1-20 percent) until

roughly the final 12 to 24 hours of the approach phase [12].

In a typical robotic mission, a TCM to remove ex-
ecution errors from earlier maneuvers will be scheduled

at about i0 days prior to encounter. This point is near

enough to encounter to effect fairly small changes in the
aim point, but far enough out so that there is sufficient

time to redetermine the orbit, and design and execute a

final TCM at 1 to 2 days out, if necessary. The error co-

variance matrix for the B-plane coordinates prior to each
maneuver is just the sum of the orbit-determination er-

ror covariance and the guidance-error covariance at the
maneuver epoch, assuming that the orbit-determination

errors and guidance errors are independent:

A -=AoD+Ao (2)

where

A _ = B-plane coordinate error covarianee matrix
AB

AoD = B-plane coordinate orbit determination error co-
variance
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Ao = B-plane coordinate guidance error eovariance

The guidance-error covariance reflects the B-plane co-

ordinate uncertainty obtained upon completion of the pre-

vious maneuver. Equation (1) can be inverted to compute
a maneuver to correct for a known aim-point error, A/_:

B. Guidance-Error Calculations

Using Eqs. (2), (3), and (4), approximate guidance
(maneuver-execution error) dispersion ellipses can be cal-

culated for TCMs performed near Mars. The results given
below were computed for TCMs assumed to be located at

10 days (hereafter referred to as TCM1) and 1-day (here-
after referred to as-TCM2) prior to encounter, respectively.

^

= K- Ag (3)

where

AB = orbit-determination estimate of A/_ at maneu-

ver epoch

Since the maneuver computed using Eq. (3) must by

necessity be based on an estimate of A/_, it becomes ap-

parent that the accuracy of the maneuver will be limited by
orbit-determination accuracy. Hence, it is desirable that

maneuvers be executed only when the orbit-determination

uncertainty at the maneuver epoch is small relative to the
size of the guidance errors to be removed from the trajec-

tory.

After a maneuver, the B-plane coordinate error covari-

ante, assuming that the orbit-determination errors and
maneuver-execution errors are independent, is

A - = AoD + KAEK T (4)

where

AE = maneuver-execution error covariance

The B-plane coordinate covariance in Eq. (4) becomes

the guidance-error covariance in Eq. (2) for the next ma-
neuver. When a maneuver At is computed, the errors in

the orbit-determination estimate of the trajectory at that

time result in an erroneous computation; hence, orbit-
determination errors are effectively translated into guid-

ance errors as each successive maneuver is performed.

Maneuver-execution errors, caused by imperfect execu-

tion of the planned maneuver, are typically broken into

fixed errors and proportional errors, both in A_" magni-

tude and direction. Representative three-sigma values for
large robotic spacecraft such as Galileo and Cassini are

about 1.0 mm/sec fixed magnitude and direction, 5.0 per-

cent proportional magnitude, and 102 mrad/axis propor-
tional direction.

The B-plane coordinate error covariance prior to TCM1

must be specified to determine the expected magnitude

of this maneuver. The guidance-error covariance at this
point was assumed to be a spherical-error ellipsoid, with

a radius equal to 150 km, which is the semimajor axis

(one-sigma) of the predicted B-plane dispersion ellipse for
Mars Observer before its final TCM, 10 days prior to or-
bit insertionfi It should be noted here that the linearized

time-of-flight uncertainty actually represents the position
uncertainty in the S direction divided by the hyperbolic

approach velocity, Voo; therefore, a spherical position un-

certainty ellipse is easily converted into an appropriate

B-plane coordinate covariance. The orbit-determination
error covariance was also assumed to be spherical, with

a radius (one-sigma) of 10 kin. This figure is representa-
tive of anticipated Earth-based radio-only tracking perfor-

mance about 10 years from now, and is based on the study

performed by Konopliv and Wood [4].

To compute the magnitude statistics of TCM1, Eq. (3)
must first be used to compute the AV covariance at 10 days

out, using the assumed B-plane coordinate covariance.

From the A_" covariance, the expected value and stan-

dard deviation of the maneuver magnitude can be ob-
tained from the Monte Carlo simulation data describ-

ing maneuver magnitude statistics presented by Bollman

and Chadwick [13]. The expected magnitude of TCM1

was found to be 28 cm/sec, with a standard deviation of
12 cm/sec; the three-sigma magnitude is then 64 cm/sec.

The largest three-sigma execution error component, us-
ing the three-sigma maneuver execution statistics given

above, was found to be 3 cm/sec. This value was as-
sumed to apply to all three components of TCM1, re-

sulting in a post-TCM1, three-sigma, B-plane guidance
dispersion ellipse that is circular, with a radius of about

26 km. The post-TCM1 guidance and orbit-determination

B-plane dispersions (three-sigma) and the root-sum-

square (RSS) navigation (orbit-determination errors plus

guidance errors) three-sigma dispersion ellipse are shown

in Fig. 6(a). The corresponding post-TCM1 total LTOF
uncertainty (three-sigma) is equal to 40 km/Vo_.

20p. cit.
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To compute the execution-error statistics for TCM2,

the same process described above for TCMI was repeated,
with one modification. It was assumed that the orbit-

determination B-plane covariance prior to TCM2 was

small relative to the guidance-error covariance, which is

just the post-TCM1 error eovariance. It will be shown

in the next section that this is a good assumption when

a Mars-orbiting relay satellite is available as a naviga-
tion aid. The expected magnitude and standard deviation

of TCM2 were then a function only of the post-TCM1

B-plane covariance. The three-sigma TCM2 magnitude

was found to be 55 cm/sec. The largest maneuver-

execution error component was again assumed to apply
to all three spatial components of the maneuver, to con-
struct a conservative estimate of the execution error dis-

persions. The three-sigma B-plane guidance dispersion

ellipse for TCM2 is shown in Fig. 6(b). The correspond-

ing three-sigma LTOF uncertainty was about 2.4 km/Voo.
The calculation of the orbit-determination B-plane disper-

sions needed to compute statistics for the total post-TCM2
navigation error uncertainty is the subject of the next sec-
tion.

C. Orbit-Determination Analysis

To effectively support tile final TCM (TCM2) before

encounter, tile errors in the trajectory solution used to
compute the maneuver must be small relative to the guid-

ance errors to be corrected, as discussed above. The
orbit-determination errors at the time of TCM2 must also

be small enough that the navigation errors at encounter,
which include TCM2 maneuver-execution errors as well as

orbit-determination errors, will not exceed the allowable
requirements. Thus, after the first approach phase TCM

(TCM1) is performed at 10 days out as assumed in this

analysis, the approach trajectory must be redetermined

accurately within 9 days, to support TCM2.

The Mars approach orbit-determination accuracy that
can be achieved with conventional Earth-based radio met-

ric data is fundamentally limited by errors in knowledge
of the geocentric position and velocity of Mars itself, until

the motion of the approaching spacecraft becomes domi-

nated by the Martian gravity field. This does not occur

until the last few hours or days before closest approach,
depending on the approach trajectory characteristics. A

spacecraft already orbiting Mars, since it is closely tied
to the planet gravitationally, can be used as a radio nav-

igation aid for an approaching spacecraft in two differ-

ent ways. Ranging measurements between the two space-
craft have been shown to be potentially capable of deter-

mining the Mars-relative position and velocity of the ap-
proaching spacecraft to within a few kilometers and cen-

timeters/second, respectively, although there exist track-

ing geometries that may yield significantly degraded per-
formance [1,4,7]. Simultaneous tracking of a Mars orbiter

or lander and an approaching spacecraft using Earth-based

delta very long baseline interferometry (AVLBI), when
used in conjunction with conventional Doppler and rang-
ing data, has also been shown to be capable of similar

accuracies [5]. In this section, the orbit-determination ac-

curacy that can be obtained from both of these techniques

is illustrated using approximate calculations of B-plane
dispersions for short data arcs acquired near Mars.

1. Spacecraft-Spacecraft Ranging. The tracking
geometry for spacecraft-spacecraft ranging measurements

is depicted in Fig. 7. It has been shown previously [6] that
the range observable, p, can be written simply as

p = [i - cos 6 cos - + (5)

where

r = distance from approach spacecraft to center of
Mars

6 = spacecraft declination relative to satellite orbit

plane

a = spacecraft right ascension in satellite orbit plane

r, = relay-satellite orbital radius

c_, = relay-satellite true anomaly

It can be seen from Eq. (5) tl_at the range observable
will enable a complete determination of the time histo-

tics of the approach spacecraft spherical coordinates rel-

ative to the satellite orbit plane. The ephemeris (posi-
tion and velocity) of the relay satellite generally must also

be estimated along with the approach spacecraft trajec-

tory. To investigate the orbit-determination performance

of spacecraft-spacecraft ranging, statistics associated with

a weighted least-squares estimate of the B-plane coordi-

nates describing the approach trajectory can be readily

computed from the partial derivatives of Eq. (5) with re-
spect to the approach trajectory and the relay-satellite or-

bit, and the error covariance assumed for the ranging data.

To compute the B-plane statistics, each ranging mea-

surement, designated z, is assumed to consist of the actual

range value and a zero-mean additive noise, v:

= p + (6)
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Small changes in a series of ranging measurements, Ay,
from range values computed using an a priori estimate

of the approach trajectory, are related to small changes in

the vector of estimated parameters, A£, from their a priori

values through a linearized matrix equation:

 xy= + (7)

where

azl/c9 ¥

az2/O

A=

a .la ¥

For spacecraft-spacecraft ranging covariance analysis, the

estimated parameters were the epoch B-plane parameters,

the magnitude and orientation of the asymptotic approach
velocity vector, the position and velocity of the relay satel-

lite at epoch, and a range measurement bias and bias rate,

for a total of 14 parameters, M1 of which are constants. The

error covariance for a weighted least-squares estimate of £,

designated Ax, is

]-'Ax = x +ATA_ -1A (8)

In Eq. (8), Ax is the a priori error covariance for the esti-

mated parameters, and Av is the error covariance for the

noise-induced range measurement errors.

The assumptions used in the "baseline" spacecraft-

spacecraft ranging scenario are given in Table 2. As in
the guidance error computations, the approach spacecraft

was assumed to nominally move at a constant velocity rel-

ative to Mars, since this is a good approximation for the
trajectory until very near encourater. The approach ve-

locity, Voo, was chosen to be a midrange value, given the

arrival velocity ranges from Table 1. The declination of the

incoming velocity vector, given in Table 2 to be 20 deg, is
defined with respect to the satellite orbit plane. The T axis

(see Fig. 5), is taken here to lie in the Martian equatorial

plane; therefore, by setting 6 equal to zero, the miss vector
lies in the Martian equatorial plane as well. In Table 2,

the parameter hp is the periapsis altitude for the actual

hyperbolic flight path, whose incoming asymptote is coin-
cident with the constant velocity trajectory used for the

analysis. This value of hp is representative of aerobraking
approach trajectories used in previous studies [1,2].

B-plane dispersion ellipses calculated using three dif-

ferent values of range acquisition distance, the distance

from Mars at which ranging data are first acquired, and

two different values of the approach trajectory declination

are shown in Fig. 8. In all cases shown in Fig. 8, the

data cutoff point was assumed to be 24 hr prior to clos-

est approach, and it was further assumed that the relay
satellite was always in view of the approach spacecraft, so

that ranging data were acquired continuously. Since data
are taken up until the time of TCM2, it is implicitly as-
sumed that the orbit-determination and TCM2 computa-

tions are performed onboard the approach spacecraft. The

three-sigma LTOF uncertainty in all cases was less than

(r.03 see (equivalent to 120 m). These cases represent, the
performance that might be obtained with two-way ranging

data. The range acquisition distance that can be achieved,

which is seen in Fig. 8 to have a significant impact on
orbit-determination performance, will depend upon the

antenna sizes and transmitter power available on the two

spacecraft, and the link frequency as well. The largest
acquisition distance used, 2 million kin, is reached about

5.8 days before encounter, while the minimum distance,

1 million km, is reached only 2.9 days from encounter.

In this analysis, the range measurement accuracy was

assumed to vary linearly with the range between the two

spacecraft (see Table 2); this behavior was found to be rep-

resentative of a power-limited spacecraft-spacecraft rang-
ing system in an earlier investigation [1]. It should be

remembered that the relay-satellite ephemeris was esti-

mated along with the trajectory of the approach space-
craft. The relay-satellite a priori position and velocity un-

certainties given in Table 2 are representative of the level of
accuracy that can typically be achieved using Earth-based

Doppler tracking data. Since it takes time to estimate the

relay-satellite ephemeris from the ranging data, along with

the other estimated parameters, changes in the a priori
relay-satellite covariance will affect the accuracy achieved

for the approach spacecraft, especially in cases when the

range acquisition distance is small and the data arc is

thereby short in length.

In Fig. 8, note than the B-plane dispersion ellipses for

the small declination cases, Fig. 8(b), are much larger than
those for the corresponding cases in which baseline decli-

nation from Table 2 was used, Fig. 8(a). When the mag-

nitude of the declination angle (6) is small, range mea-
surements are relatively insensitive to small changes in
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declination, which in Fig. 8 corresponds roughly to the
/_ direction. This behavior can be illustrated by taking

tile partial derivative of Eq. (5) with respect to 6, which

to first order is the sensitivity of range to a small change
in 6. If it is assumed that r_/r << 1 (a good assumption

until the last one or two days before closest approach), this
partial derivative is approximately

OplO6 ~ r, sin 6 cos (era - a) (9)

From Eq. (9), it is apparent that when 6 is small, it will

be difficult to accurately determine the declination angle

(and hence its rate of change as well) from ranging data.

2. Earth-Based Doppler and Dual-Spacecraft

Interferometry. Earth-based VLBI tracking of a Mars

orbiter or lander and a spacecraft approaching Mars pro-

vides a direct measure of the Mars-relative approach tra-
jectory, without requiring any communication between
tile two spacecraft. A detailed description of the dual-

spacecraft VLBI measurement technique and the error

sources affecting this data type is given by Edwards,

Folkner, Border, and Wood [5]. Two-way (coherent)
Doppler tracking of the approach spacecraft can to some

degree sense the Mars-relative spacecraft trajectory, but

only when the spacecraft is within the gravitational influ-
ence of Mars, which does not occur until the last few hours

or days prior to closest approach. Since Doppler data sense

the spacecraft motion along the Earth-spacecraft line of

sight, and VLBI data sense primarily the motion perpen-

dicular to the line of sight, these two data types provide

complementary information when used together.

The information content of Doppler data acquired dur-

ing the planetary approach phase has been described by
Bollman [14]. A dual-spacecraft VLBI observation, illus-

trated in Fig. 9, consists of the time delay of radio signals

observed by two stations; the radio signals from one space-
craft are differenced with the time delay from the other

spacecraft as observed by the same two stations. As men-

tioned earlier, tile trajectory of a Mars orbiter or lander

with respect to Mars can be accurately determined from

Earth-based tracking data, since it is gravitationally (or

physically in the case of a lander) tied to Mars. Assuming
the position of one of the two spacecraft is well known with

respect to Mars, the dual-spacecraft VLBI observable, At,
is approximately

Ar ,_ FB. (_._Vp) (IO)
c

where

_'_ = baseline vector between the two participating
stations

F = unit vector pointing toward approach spacecraft

_'p = unit vector pointing toward Mars

c = speed of light

During roughly the final two weeks before encounter,

Eq. (10) becomes very nearly a function of the Mars-

relative spacecraft position and the Earth baseline only:

AT_ (1) _'B'_/pr (11)

where

/_,/p = approach spacecraft position with respect
to Mars

r = approach spacecraft distance from Earth

From Eq. (11), it can be seen that the precision of the
dual-spacecraft VLBI observable is directly proportional

to tile length of the baseline and inversely proportional to
the Earth-spacecraft distance.

The assumptions used for calculating Doppler/dual-
spacecraft VLBI orbit determination performance are

given in Table 3. The trajectory parameters used (V_, 0,
hp) were the same as those for the spacecraft-spacecraft

ranging cases (see Table 2). Tile estimated parameters

were the B-plane coordinates and the arrival velocity vec-
tor components, a total of six in all. Calculations were

performed for viewing geometries corresponding to two
different Mars approach trajectories, representing type-1

and type-2 minimum launch energy transfers for tile 1998

launch opportunity, respectively. The encounter geome-

tries for these two eases are those shown in Figs. 2 and 3.

The Mars relay-satellite used for acquiring dual-spacecraft

VLBI data was assumed to have an ephemeris uncertainty

of 2.0 km (one-sigma, each component), which was treated

as a random error affecting the data. In Table 3, the

dual-spacecraft VLBI measurement uncertainties are given
in units of distance (cm) instead of units of time, since

the observable, Eq. (10), can be viewed as a measure of

distance simply by removing the factor 1/c. The mea-

surement accuracy assumed for the dual-spacecraft VLBI
data was that given by Edwards for observations made at

X-band (8.4-GHz) frequencies [5]. Since Earth-based data

would likely be processed on Earth, the data cutoff point
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was assumed to be 36 hr from encounter, allowing 12 hr

for the ground processing needed for orbit determination

and computation of the TCM2 maneuver at 24 hr from
encounter.

B-plane and LTOF dispersions for three different dual-

spacecraft VLBI data sets are shown in Fig. 10. The
performance in the "baseline" cases, which include dual-

spacecraft VLBI data acquired from two baselines formed

by the DSN complexes near Goldstone, California; Madrid,

Spain; and Canberra, Australia, is seen to be significantly

better than that obtained when only one of the two DSN
baselines is used. These results raise the question of

whether spacecraft near Mars can be viewed from both the
DSN Goldstone-Canberra and Goldstone-Madrid base-

lines for all possible Mars encounter dates. Figure 11 illus-

trates the overlap regions in which different portions of the
celestial sphere can be viewed simultaneously from differ-

ent pairs of DSN complexes. In Fig. 11, spacecraft decli-

nation is referred to the Earth's equatorial plane. Mars

encounter declinations range from about -25.5 deg to

+25.5 deg; for low-declination encounters, it can be seen
from Fig. 11 that the Goldstone-Madrid baseline may not

be able to view Mars and its vicinity. In fact, minimum el-

evation restrictions limit the lowest declination angle that

can be effectively observed simultaneously by Goldstone
and Madrid to about -20 deg.

D. Total Perlapsis Altitude Navigation Error

This section presents the three-sigma periapsis altitude
uncertainties that could be obtained using the hypotheti-

cal guidance and orbit-determination scenarios developed

in the previous sections. The statistics of the altitude er-
ror at periapsis can be readily calculated from the total

navigation B-plane error covariance, consisting of orbit-

determination and guidance-error statistics, at completion
of the final trajectory correction maneuver. As stated in

the Introduction, the periapsis altitude error that can be

tolerated by aerobrake vehicles possessing moderate (0.5

to 0.7) lift-to-drag ratios is between 5 and 20 kin, depend-

ing upon the target orbit; this requirement is much more
stringent than the periapsis downtrack error requirement

(30 to 50 km) for these vehicles, and will therefore be the

focus of the remaining discussion.

The magnitude of the miss vector, [/_ [, is related to the

periapsis radius, rp, through the following formula from
two-body orbital mechanics:

Ig l = ,'pV/1+ (12)

In Eq. (12), p is the gravitational parameter of the target

body. To first order, small errors in rp due to errors in

[ /3 ] can be expressed through the partial derivative of

Eq. (12), yielding

I g l I g l (13)
,'p+ O,IV£)

From Fig. 6(b), the three-sigma uncertainty in /3 due
to maneuver execution errors in the final TCM is about

2.4 kin. For a nominal periapsis altitude of 20 km (rp =
3417 km), this results in a three-sigma altitude uncertainty

ranging from 1.95 km for an arrival velocity of 3.0 km/sec

to 2.39 km for an arrival velocity of 10.0 km/sec. This

guidance component of the altitude error represents the
lower bound for the total navigation error. In looking at

the orbit determination B-plane dispersions in Figs. 8 and

10, it can be seen that in most cases the guidance errors
are small relative to the orbit-determination errors.

The previous section showed that the orbit-determina-

tion performance of spacecraft-spacecraft ranging varies

with the declination of the approach trajectory with re-

spect to the relay-satellite orbit plane and the maximum

distance over which ranging data can be acquired. To
investigate the sensitivity of the total altitude naviga-

tion error at periapsis to changes in V_ using spacecraft-

spacecraft ranging for orbit determination, three-sigma al-
titude uncertainties were calculated over a range of Vo_

values for two different values of acquisition range. The

error modeling assumptiorts used were those given in Ta-
ble 2. The results are shown in Fig. 12; the minimum

value of altitude uncertainty is about 2 kin, which is pri-

marily due to the guidance error component of the total

navigation error. The calculations were repeated for cir-
cular orbits of different altitudes, ranging from 17,000 km

(24.6-hr period, shown in Fig. 12) down to 5000 km (6.2-hr

period). The results for the lower altitude orbits were not

significantly different from those given in Fig. 12, and were
therefore not shown, although this may not be the case

for elliptic orbits [4]. In general, the data in Fig. 12 indi-

cate that relatively large acquisition ranges may be needed

to meet aerocapture approach navigation requirements for
higher energy approach trajectories.

The navigation performance obtained when Earth-
based Doppler and dual-spacecraft VLBI data are used for

orbit determination may also vary with the Mars arrival

velocity. The variation in periapsis altitude uncertainty

with Vo_ for this case is shown in Fig. 13, for both the

1998 type-1 and type-2 trajectory geometries used pre-

viously (the error modeling assumptions used were those
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given in Table 3). The curve for the type-2 trajectory in

Fig. 13 ends at V_ = 6 km/sec since this was found to

be roughly the upper bound for type-2 trajectories (see
Table 1). The curve for the type-1 trajectory extends to

V_o = 10 km/sec since the high-energy trajectories that

might be followed by spacecraft utilizing nuclear rocket
propulsion would be type-l-class trajectories. The behav-

ior seen in Fig. 13 indicates that the impact of large values

in this case is much less severe than that for spacecraft-

spacecraft ranging. This is due to the fact that for the

Earth-based data set, the length of the data arc is 8.5 days,

regardless of the value of V_, whereas in the spacecraft-

spacecraft ranging cases, the acquisition range constraint
effectively reduces the length of the ranging data arc as Voo

increases. Overall, though, the results in both Figs. 12 and

13 suggest that 2- to 10-km-altitude delivery accuracies

can be achieved over a wide range of arrival velocities and

viewing geometries using conventional impulsive guidance

methods coupled with either spacecraft-spacecraft ranging
or Earth-based dual-spacecraft VLBI.

The final sensitivity analysis investigated the impact

of the Doppler data accuracy on the navigation perfor-
mance that uses Earth-based Doppler and dual-spacecraft

VLBI data. Figure 14 shows the variation in periap-

sis altitude navigation uncertainty with the Doppler data
weight (accuracy) for the Doppler/dual-spacecraft VLBI

baseline scenarios described in Table 3. The value of V_

used for all calculations shown in Fig. 14 was 4.0 km/sec.

The Doppler accuracy used in the original baseline sce-
narios, 1.0 mm/sec, is representative of the performance

of the current DSN Doppler system at S-band (2.3 GHz).
At X-band (8.4 Gttz), DSN Doppler accuracy is about

0.1 mm/sec, except for Sun-Earth-spacecraft angles of
less than roughly 10 deg. Ill Fig. 14, the guidance er-

ror causes the altitude uncertainty curve to be essentially

flat for Doppler weights of 0.1 mm/sec or better, while at

the other extreme, once the Doppler weight reaches about
5.0 ram/see, the altitude uncertainty curve becomes fiat

once again, indicating that the Doppler data are no longer
affecting the altitude estimate. Ilowever, it appears that

increasing the Doppler data accuracy from 1.0 mm/see to
0.1 mm/sec may yield a significant improvement in per-
formance, although it must be noted here that systematic

error sources known to affect Doppler data, but not explic-
itly modeled in this analysis, may cause this improvement

to be much less than that shown in Fig. 14 for the ideal
case.

IV. Conclusions

Before stating any specific conclusions, it must be em-

phasized that the results of this analysis are products

of the assumptions and error models used. Although
the assumptions made for such parameters as maneuver-

execution error statistics and data accuracies were, in-

tentionally, conservative, the error models used to pre-

dict orbit-determination performance were relatively sim-

ple and did not include all error sources that may be

present in actuality, but only those considered most sig-

nificant. Previous experience with the kinds of approxi-

mations and assumptions used in this study suggest that
the navigation-error statistics derived from these scenarios

could be in error by as much as 20 percent, compared with

results obtained with more complete error models.

Radio metric data types using a Mars-orbiting space-
craft as a navigation aid were found to be capable of de-

livering three-sigma periapsis altitude navigation errors of

2 to 10 km over a fairly wide range of Mars arrival ve-

locities and viewing geometries. This level of performance

equals or nearly meets that needed to support aerobraking

for Mars orbit insertion by aerobrake vehicles possessing

moderate lift-to-drag ratios. In most cases, the guidance-
error contribution to the total navigation-error uncertainty
was small relative to the orbit-determination errors. For

spacecraft-spacecraft ranging data acquired from a Mars

relay satellite, the orbit-determination performance was

found to be sensitive to changes in the Mars arrival veloc-

ity, the declination of the approach trajectory with respect
to the satellite orbit plane, and the maximum distance over

which ranging data can be acquired.

The orbit-determination accuracy obtained from Earth-

based Doppler/dual-spacecraft VLBI data sets was com-

parable to that obtained from spacecraft-spacecraft rang-
ing data when two DSN baselines are used for obtaining

dual-spacecraft VLBI data, but was much poorer when
only one baseline was used. In addition, it was found that

Doppler/dual-spacecraft VLBI performance was much less

sensitive to changes in the Mars arrival velocity than that

of spacecraft-spacecraft ranging data. Because of visibil-

ity restrictions for the DSN Goldstone-Madrid baseline,
it may not be possible to obtain dual-spacecraft VLBI
data from both of the currently available DSN baselines

(Goldstone-Madrid and Goldstone-Canberra) for Mars

encounter declinations (relative to the Earth's equator)
less than about -20 deg.

122



References

[1] K. M. Spratlin, ed., 1989 Lunar/Mars Initiative Guidance, Navigation and Con-
trol Final Report, CSDL-P-2838, Tile Charles Stark Draper Laboratory, Inc.,

Cambridge, Massachusetts, February 1990.

[2] S. W. Shepperd, D. P. Puhry, and T. 3. Brand, "Onboard Preaerocapture Nav-
igation Performance at Mars," paper AAS 91-119, AAS/AIAA Spaceflight Me-

chanics Meeting, Houston, Texas, February 11-13, 1991.

[3] J. K. Soldner, "Round-Trip Mars Trajectories: New Variations on Classic Mission

Profiles," paper AIAA-90-2932, AIAA/AAS Astrodynamics Conference, Port-

land, Oregon, August 20-22, 1990.

[4] A. K. Konopliv and L. J. Wood, "IIigh-Aceuracy Mars Approach Navigation
with Radio Metric and Optical Data," paper AIAA-90-2907, AIAA/AAS Astro-

dynamics Conference, Portland, Oregon, August 20-22, 1990.

[5] C. D. Edwards, W. M. Folkner, J. S. Border, and L. J. Wood, "Spacecraft-
Spacecraft Interferometry for Planetary Approach Navigation," paper AAS 91-

181, AAS/AIAA Spaceflight Mechanics Meeting, Houston, Texas, February 11-
13, 1991.

[6] S. W. Thurman and J. A. Estefan, "Mars Approach Navigation Using Doppler

and Range Measurements to Surface Beacons and Orbiting Spacecraft," paper

AAS 91-118, AAS/AIAA Spaceflight Mechanics Meeting, Houston, Texas, Febru-

ary 11-13, 1991.

[7] A. C. Young, J. A. Mulqueen, and 3. E. Skinner, Mars Ezploration, Venus
Swingby and Conjunction Class Mission Modes, Time Period 2000 to 2045,

NASA Technical Memorandum 86477, George C. Marshall Space Flight Cen-

ter, Huntsville, Alabama, August 31, 1984.

[8] V. A. Lee and S. W. Wilson, "A Survey of Ballistic Mars-Mission Profiles,"
J. Spacecraft Rockets, vol. 4, no. 2, pp. 129-142, February 1967.

[9] A. B. Sergeyevsky, G. C. Snyder, and R. A. Cunniff, Interplanetary Mission De-
sign Handbook, vol. 1, part 2, JPL Publication 82-43, Jet Propulsion Laboratory,

Pasadena, California, September 15, 1983.

[10] G. R. Hintz, "An Interplanetary Targeting and Orbit Insertion Maneuver Design

Technique," 3". Guidance Control, vol. 5, no. 2, pp. 210-217, March-April 1982.

[I1] G. R. Hintz and C. Chadwick, "Design and Analysis Techniques for Trajectory

Correction Maneuvers," paper AIAA-84-2014, AIAA/AAS Astrodynamics Con-

ference, Seattle, Washington, August 20-22, 1984.

[12] W. E. Bollman and M. G. Wilson, "Planetary Trajectory Correction Maneu-

ver Dynamics on Approach Hyperbolic Trajectories," paper AIAA-86-2117,
AIAA/AAS Astrodynamics Conference, Williamsburg, Virginia, August 18-21,
1986.

[13] W. E. Bollman and C. Chadwick, "Statistics of AV Magnitude for a Trajectory

Correction Maneuver Containing Deterministic and Random Components," pa-
per AIAA-82-1429, AIAA/AAS Astrodynamics Conference, San Diego, Califor-

nia, August 9-11, 1982.

[14] W. E. Bollman, "An Approximate Solution to the Analytical Partials of the

Spacecraft's Geocentric Range-Rate During the Pre-Encounter Phase of a Plane-

tary Mission," JPL Space Programs Summary 37-52, vol. 2, pp. 34-37, May-June
1968.

123



Table 1. Launch energy and Mars arrival velocity ranges (optimized Earth-Mars

direct transfers, 1995-2020)

Trajectory type

Launch energy, km 2/sec _ Arrival velocity, km/sec

Avg. Range Avg. Range

Minimum launch energy

(type-l) 12.2 8.0-19.0 4.1 2.7-6.0

Minimum launch energy

(type- 2) 10.9 8.0-17.0 3.6 2.5-6.0

Minimum arrival velocity

(type- 1) 20.0 8.0-31.0 3.6 2.3-4.0

Minimmn arrival velocity

(type-2) 16.6 9.0-31.0 2.9 2.4-4.0

Table 2. Spacecraft-spacecraft ranging baseline scenario

Approach spacecraft trajectory:

Voo = 4.0 km/sec, 6 = 20.0 deg, 0 = 0.0 deg, hp = 20.0 krn

Relay-satellite orbit:

Period = 24.62 hr (Mars-synchronous), altitude = 17,030.6 km

Ranging measurement accaxracy, _m.mple rate:

_ra = p/22,000 (m), sample rate = 6 points/hr

A priori approach spacecraft uncertainties (one-sigma):

AJ_ • _r, Am- T = 15.0 kin, ALTOF = 3.57 sec, AVoo = 2.0 crn/sec (each component)

A priori relay-satellite uncertMnties (one-sigma):

Position = 2.0 km, velocity = 1.0 cm/sec (each component)

A priori ranging system uncertainties (one-sigma):

Range bias = 33.3 nsec (10.0 m), bias drift = 1.0 x 10 -n see/see (3.0 ram/see)

Table 3. Earth-based Doppler/dual-spacecraft VLB! baseline scenarios

Type-1 minimum launch energy Type-2 minimum launch energy

r= 1.5 X 10 akm

6 = --16.6 <leg _

GVLBI = 8.0 cm

O'Do p = 1.0 nLnl/sec

r = 2.8X l0 skm

6 = -14.4 deg a

(YVLBI ---- 5.0 ctn

O'Do p =. 1.0 mm/sec

A priori approach spacecraft uncertainties (one-sigma):

Am • T, A/_- _" = 15.0 kin, ALTOF = 3.75 see, AVoo = 2.0 era/see (each component)

Doppler data schedule:

Continuous data (sample rate = 1 point/rain) from E -10 days to E -1.5 days

Dual-spacecraft VLBI data schedule:

1 point/day each from DSN Coldstone-Madrid and Goldstone-Canberra

baselines from E -10 days to E -1.5 days

(9 polnts/baseline, 18 points total)

_With respect to Earth's equatorial plane.
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Fig. 1. Direct Earth-Mars transfer trajectories, 1998 launch

opportunity,
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Fig. 2. Mars arrival geometry for type-1 transfer (1998 opportunity, minimum launch energy):

(a) vlew from Earth, and (b) view trom above ecliptic plane.
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Fig. 3. Mars arrival geometry for type-2 transfer (1998 opportunity, mlnlmum launch energy):

(a) view from Earth, and (b) view from above ecliptic plane.
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Fig. 4. Launch azimuth constraints for Kennedy Space Center.
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and (b) post-TCM2.

127



Z

RELAY
SATELLITE

ORBIT _ APPROACH

" SPA_. RAFT

Fig. 7. Spacecrafl-.spacecraft tracking geometry.
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Fig. 9. Dual-spacecraft VLBI observation.
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